您的位置:新葡萄京娱乐场app > 汽车杂说 > SLAM算法解析,陌生环境不抓瞎

SLAM算法解析,陌生环境不抓瞎

发布时间:2019-08-25 11:09编辑:汽车杂说浏览(153)

    当你身处一个陌生的地方,要准确找到目的地和路线,十有八九会打开手机上的地图app,然后定位、输入目的地、规划路线、导航。

    当你身处一个陌生的地方,要准确找到目的地和路线,十有八九会打开手机上的地图app,然后定位、输入目的地、规划路线、导航。

    作者:黄建义     组别:研一

    机器人也一样。当它们身处未知环境时,同样需要通过以上步骤才能做出正确的运动。只不过,机器人靠的不是手机地图 app,而是 SLAM技术。

    机器人也一样。当它们身处未知环境时,同样需要通过以上步骤才能做出正确的运动。只不过,机器人靠的不是手机地图 app,而是 SLAM技术。

    【嵌牛导读】:SLAM(Simultaneous Localization and Mapping) 是业界公认视觉领域空间定位技术的前沿方向,中文译名为「同步定位与地图构建」,它主要用于解决机器人在未知环境运动时的定位和地图构建问题。

    新葡萄京官网,SLAM 全称 Simultaneous Localization and Mapping,中文名曰「同步定位与地图构建」,主要用于解决机器人在未知环境运动时的定位和地图构建问题。这更像一个概念,而不是某种算法。它本身包含许多步骤,其中的每一个步骤均可以使用不同的算法实现。

    SLAM 全称 Simultaneous Localization and Mapping,中文名曰「同步定位与地图构建」,主要用于解决机器人在未知环境运动时的定位和地图构建问题。这更像一个概念,而不是某种算法。它本身包含许多步骤,其中的每一个步骤均可以使用不同的算法实现。

    嵌牛鼻子】:有人就曾打比方,若是手机离开了 WIFI 和数据网络,就像无人车和机器人,离开了 SLAM 一样。

    机器人、无人车、无人机、AR,无所不能的 SLAM

    机器人、无人车、无人机、AR,无所不能的 SLAM

    【嵌牛正文】:目前科技发展速度飞快,想让用户在 AR/VR、机器人、无人机、无人驾驶领域体验加强,还是需要更多前沿技术做支持,SLAM 就是其中之一。实际上,有人就曾打比方,若是手机离开了 WIFI 和数据网络,就像无人车和机器人,离开了 SLAM 一样。

    两年前,SLAM 最流行的应用场景还只是我们家里的扫地机器人。近几年,随着无人机、无人驾驶、服务机器人、仓储机器人以及 AR 的兴起,SLAM 作为其中核心技术的一种,正变得越来越重要。

    两年前,SLAM 最流行的应用场景还只是我们家里的扫地机器人。近几年,随着无人机、无人驾驶、服务机器人、仓储机器人以及 AR 的兴起,SLAM 作为其中核心技术的一种,正变得越来越重要。

            在 VR/AR 方面,根据 SLAM 得到地图和当前视角对叠加虚拟物体做相应渲染,这样做可以使得叠加的虚拟物体看起来比较真实,没有违和感。在无人机领域,可以使用 SLAM 构建局部地图,辅助无人机进行自主避障、规划路径。在无人驾驶方面,可以使用 SLAM 技术提供视觉里程计功能,然后跟其他的定位方式融合。机器人定位导航方面,SLAM 可以用于生成环境的地图。基于这个地图,机器人执行路径规划、自主探索、导航等任务。

    新葡萄京官网 1

    新葡萄京官网 2扫地机器人

            SLAM 技术的发展距今已有 30 余年的历史,涉及的技术领域众多。由于本身包含许多步骤,每一个步骤均可以使用不同算法实现,SLAM 技术也是机器人和计算机视觉领域的热门研究方向。

    扫地机器人

    雷锋网的一篇报道曾引用 SLAM 技术发烧友 Guang Ling 的话,来强调 SLAM 技术的重要性:

            SLAM 的英文全程是 Simultaneous Localization and Mapping,中文称作「同时定位与地图创建」。SLAM 试图解决这样的问题:一个机器人在未知的环境中运动,如何通过对环境的观测确定自身的运动轨迹,同时构建出环境的地图。SLAM 技术正是为了实现这个目标涉及到的诸多技术的总和。

    雷锋网的一篇报道曾引用 SLAM 技术发烧友 Guang Ling 的话,来强调 SLAM 技术的重要性:

    一个机器人也好,无人汽车也好,其中最核心,最根本的问题有四个,定位技术、 跟踪技术、 路径规划技术(Path Planning), 还有就是控制技术(Controlling)。

            SLAM 技术涵盖的范围非常广,按照不同的传感器、应用场景、核心算法,SLAM 有很多种分类方法。按照传感器的不同,可以分为基于激光雷达的 2D/3D SLAM、基于深度相机的 RGBD SLAM、基于视觉传感器的 visual SLAM(以下简称 vSLAM)、基于视觉传感器和惯性单元的 visual inertial odometry(以下简称 VIO)。

    一个机器人也好,无人汽车也好,其中最核心,最根本的问题有四个,定位技术、 跟踪技术、 路径规划技术(Path Planning), 还有就是控制技术(Controlling)。 而这四个问题中的前三个,SLAM 都扮演了最核心的功能。打个比方,若是手机离开了 wifi 和数据网络,就像无人车和机器人,离开了 SLAM 一样。

    而这四个问题中的前三个,SLAM 都扮演了最核心的功能。打个比方,若是手机离开了 wifi 和数据网络,就像无人车和机器人,离开了 SLAM 一样。

            基于激光雷达的 2D SLAM 相对成熟,早在 2005 年,Sebastian Thrun 等人的经典著作《概率机器人学》将 2D SLAM 研究和总结得非常透彻,基本确定了激光雷达 SLAM 的框架。目前常用的 Grid Mapping 方法也已经有 10 余年的历史。2016 年,Google 开源了激光雷达 SLAM 程序 Cartographer,可以融合 IMU 信息,统一处理 2D 与 3D SLAM 。目前 2D SLAM 已经成功地应用于扫地机器人中。

    也许有读者好奇,为什么无人车也非常依赖 SLAM?因为无人车被看作移动机器人的一种,也需要首先解决定位、避障和导航的问题。目前用在无人驾驶汽车上的 SLAM 主要是基于激光雷达传感器,后面会详细提到。

    也许有读者好奇,为什么无人车也非常依赖 SLAM?因为无人车被看作移动机器人的一种,也需要首先解决定位、避障和导航的问题。目前用在无人驾驶汽车上的 SLAM 主要是基于激光雷达传感器,后面会详细提到。

            基于深度相机的 RGBD SLAM 过去几年也发展迅速。自微软的 Kinect 推出以来,掀起了一波 RGBD SLAM 的研究热潮,短短几年时间内相继出现了几种重要算法,例如 KinectFusion、Kintinuous、Voxel Hashing、DynamicFusion 等。微软的 Hololens 应该集成了 RGBD SLAM,在深度传感器可以工作的场合,它可以达到非常好的效果。

    天上飞的的无人机同样需要 SLAM 来「添翼」。SLAM 能让无人机知道障碍物在哪里,进而实现自动避障的功能。

    天上飞的的无人机同样需要 SLAM 来「添翼」。SLAM 能让无人机知道障碍物在哪里,进而实现自动避障的功能。

            视觉传感器包括单目相机、双目相机、鱼眼相机等。由于视觉传感器价格便宜,在室内室外均可以使用,因此 vSLAM 是研究的一大热点。早期的 vSLAM 如 monoSLAM 更多的是延续机器人领域的滤波方法。现在使用更多的是计算机视觉领域的优化方法,具体来说,是运动恢复结构(structure-from-motion)中的光束法平差(bundle adjustment)。在 vSLAM 中,按照视觉特征的提取方式,又可以分为特征法、直接法。当前 vSLAM 的代表算法有 ORB-SLAM、SVO、DSO 等。

    香港科技大学助理研究员徐枭涵曾在知乎上如此形容 SLAM 对无人机的重要性:

    香港科技大学助理研究员徐枭涵曾在知乎上如此形容 SLAM 对无人机的重要性:

            视觉传感器对于无纹理的区域是没有办法工作的。惯性测量单元(IMU)通过内置的陀螺仪和加速度计可以测量角速度和加速度,进而推算相机的姿态,不过推算的姿态存在累计误差。视觉传感器和 IMU 存在很大的互补性,因此将二者测量信息进行融合的 VIO 也是一个研究热点。按照信息融合方式的不同,VIO 又可以分为基于滤波的方法、基于优化的方法。VIO 的代表算法有 EKF、MSCKF、preintegration、OKVIS 等。Google 的 Tango 平板就实现了效果不错 VIO。

    所有的关于无人机的梦想都建立在 SLAM 之上,这是无人机能飞(具有定位,姿态确定以后)的时代以后,无人机最核心的技术。也是现代无人机和玩具的区别。

    所有的关于无人机的梦想都建立在 SLAM 之上,这是无人机能飞(具有定位,姿态确定以后)的时代以后,无人机最核心的技术。也是现代无人机和玩具的区别。

            总的来说,相比于基于激光雷达和基于深度相机的 SLAM,基于视觉传感器的 vSLAM 和 VIO 还不够成熟,操作比较难,通常需要融合其他传感器或者在一些受控的环境中使用。

    本文由新葡萄京娱乐场app发布于汽车杂说,转载请注明出处:SLAM算法解析,陌生环境不抓瞎

    关键词: 新葡萄京官网

上一篇:今年车市难以达到10,春天里没有奇迹

下一篇:没有了